
International Journal of" Theoretical Physics, Vol. 15, No. 6 (1976), pp. 463-471 

Critical Remarks and an Open Question in the Present 
Theory of the Electromagnetic Self-Force 

R. L. INGRAHAM 

Research Center, New Mexico State University, Las Cruces, New Mexico 88003 

Received: 17 June 1975 

It is asked whether the presently accepted theory of the classical EM self-force, the 
Lorentz-Dirac-Rohrlich theory, is "effectively analytic" in the classical radius rc, that 
is, when solutions are modified by the suppression of  terms ccer/ro, r o =- ~rc, which leads 
to practically unobservable noncausal behavior in proper time intervals Az ~ 10 .23 sec, 
whether they are analytic in r o at r o = 0 and do agree with perturbation theory. Perturba- 
tion theory-assumed power series in r o i sknown to give a good account o f  experi- 
mentally observed motion. After this open question is made precise, a tentative negative 
answer is given. A real disagreement with perturbation theory would cast considerable 
doubt  on  a theory of the EM self-force. 

1. Physical R e m a rks  

The present theory (Rohrlich, t965)  of the mot ion of  a classical charged 
particle of charge q and total mass m under an external electromagnetic field 
Fextgv(x) and its self-field is the Lorentz-Dirac (LD) equation 1 

~¢u = roPU + (q/m)Fextgu(x)2V, 1 ~ -.±.u _ ~2:~. (1.1) 

where the dot means the derivative with respect to the proper time, r, and r o = 
q2/4~rm, together with the initial data 

xU(ro) = x o  u, :cU(ro) = you (1.2a) 

and the Rohrlich asymptotic boundary" condition 

aU(':)r~+~O, (1.2b) 

where v u - 2  u, a u =-2 u. 

We use the metric (+++-)1 with x 4 ~- t. Units: c = 1. Often indices will be suppressed, 
e.g., v, ~ stand for vP, 2~ etc. When components  are written out, the order is v = 
(~1, ,2, ~3, v4). 
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464 R.L. INGRAHAM 

One may have reservations about the derivation 2 of  the LD equation; 
however, here we wish merely, given the theory (1.1) e u m  (1.2), to examine 
its consequences. 

Rewrite (1.1) as 

"Sd ~* = 222"  + 3dg/ro - (1/ro) A ~ ( x ) 2  v -f__•(x, v, a) 
( t . 3 )  

A " v  - ( q / m )  Fext~ 

This is an ordinary (nonlinear) third-order differential equation. Theorems 
exist (Coddington and Levinson, 1955) to guarantee a unique solution with 
any intial data {Xo, Vo, a0} under unrestrictive and physically easily realizable 
conditions on the external field. Namely, on the 12-dimensional space of  
points X a - (x  1 . . . . .  x 4, v 1, . . . ,  v 4, a 1, . . . ,  a4), that  a certain vector function 
F a ( x )  =@1 . . . . .  v4, a l , . . . ,  a 4 , f l , . . .  , f 4 )  be continuous and Lipschitz 
in a domain of  X space with respect to the norm IXl--- ~ IXal. Here f " ( X )  is 
defined in (1.3). 

From now on we assume that all Fext considered are such that these 
conditions are satisfied. Instead of  initial data (Xo, Vo, ao}, initial data 
(Xo, Vo} plus the asymptotic condit ion a(r)  -~ 0 as r -+ +oo are actually im- 
posed in the LDR theory (1.1),i(1.2) to prohibit  runaway behavior at 
infinity; however, in the applications we have in mind, the boundary 
conditions (1.2) can be replaced by equivalent initial data, 3 so that  the 
known existence and uniqueness theorems apply. 

The physical troubles with the LDR theory seem all to stem from the fact 
that  (1.3) is a third-order equation. The smallness of  the parameter  ro (~10  -13 
cm for an electron) helps here by making it "a lmost"  a second-order equation, 
cf.  (1 . t) .  There are two main types: (a) runaway behavior for some times, 
violations of  causality in *he form of preacceleration and predeceleration; 
(b) Solutions in general not  analytic in r o at r o = 0, hence no obvious connec- 
t ion of  solutions with per turbat ion theory. These will be made more precise 
hereafter. 

Let us comment  first physically on (a). In the f r ee  case A~v  - O, any 
solution 2** can be put  into form 4 

2 ~ = (0, 0, sinh ( A e  r/r° + B) ,  cosh (Ae  r/r° + B) )  (1.4) 

2 Space forbids more than just mention here. (1) The shrinking spheres used in the 
limit procedure are centered at the particle at the field time rather than at the 
retarded time. (2) The inevitable arbitrary division of radiated 4-momentum into 
that lost by the particle and that lost by the field inside a sphere. (3) Conservation 
of a totaI (field + particle) 4-momentum belonging to an amputated, possibly 
wrong Lagrangian. 

3 Remember that "initial" data need not all be at the same proper time. Also the 
zero of z is arbitrary by translation-invariance in r. Hereafter we take x4(0) = 0 
and then impose initial data. 

4 Rohrtich (1965), Section 6-10. 
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where A and B are arbitrary constants, by a Lorentz transformation. These 
are accelerating [at a prodigious rate (!), hence called runaway] if and only if 
A P 0. We shall need the following theorem: 

Theorem. A free solution is uniform motion [aU(r) =- 0] i f fa  u = 0 
at some r, or runaway iff aUp 0 at some r. 

I~oof We can derive a 2 = (A/ro)2e 2r/ro from (1.4). Hence A = 0@0)iff  
a 2 is ever zero (nonzero). However, a u is spacelike, so a 2 = 0 ~, a u = 0, Q.E.D. 

From now on we restrict ourselves to external fields which are turned on 
only for a finite time interval. Precisely, let Supp AUv(x) c the open strip 
0 < t < q. Now consider a solution of  (1.1) cum (1.2). There is an initial 
free region I: t < 0, a driven region II: 0 < t < t b and a final free region III: 
t > q. The asymptotic condition (1.2b) is equivalent by the Theorem to the 
initial data a o = 0 if we take our initial point r = % in free region III. Now let 
us watch the solution as time and proper time flow backwards from to, see 
Figure 1. The motion is uniform in region III by the Theorem. However, when 
the trajectory enters region II (at r = % say) nonuniform motion in general 
begins, so that at the point of  leaving region II (at r = 0, say), a(O) p 0 in general. 
But the subsequent free motion in region I is determined uniquely by the 
initial data (x(0), v(0), a(0) p 0}. Hence it is runaway by the Theorem. That 
is, there is preacceleration in free region I, and this of  course can be made to 
last as long as desired. Similarly, predeceteration sets in around r < rl. See 
Figure 2. 

Actual solutions (see later) show that these violations o f  causality are 
effectively confined to proper time intervals of  order r o ~ 10 -z3 sec and 

t TIT /.~f_-unifor m motion 

"J~/~ IIU/~ ////" dr;v/'eJn//mot,on. 

o r 

I runaway motion 

Figt~e 1-Typical trajectory with finite-duration external field. 
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Figure 2-Acceleration vs. proper time for the LDR solution (2.2), (2.3), showing pre- 
acceleration, predeceleration, and runaway behavior for r < 0. Here a(r) =- x/a2(r). 

hence are unobservable owing to masking by quantum field theory effects, s 
However, it is a consistent and tenable physical philosophy to demand that 
a theory be free of  unphysical effects whatever the sizes of  physical constants 
like h.  That is, a theoretical failing masked by another theory due to the 
"accidental" sizes of  h, c, e, m, etc., in this particular universe, should not be 
condoned. 

Point (b) above means roughly the following. Expansions of  the unknown 
xU(r; ro) in a power series in the small parameter r o and solution of  these 
perturbation theory equations is known to give a very good description of  
the experimentally observed motion, 6 for example, the radiation reaction 
and spiralling inward of  a charge in a Coulomb field. 7 However, as is known, 
and as we shall explicitly show below, in general the solution of  (1. I), (1.2) 
admits no such power series, a Thus there is no guarantee that the solution will 
agree even approximately with perturbation theory and hence with experi- 
mentally confirmed motions. Moreover, this is not  the fault of  the LDR data 
(1.2); it persists with any sort of  unique specification. This will be made precise 
below in Section 3 and gives rise to an important open question. 

5 Rohrlich (1965), Section 6-7. 
6 Rohrlich (1965), p. 156. However, good data on charged particle orbits may be 

scanty. 
7 Rohrlich (1965), Section 6-15, pp. 184-185. It is not made very explicit that one 

is here solving by perturbation theory. 
8 For example, the runaway solution with A ~ 0. 
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2. Illustration by an Exact  Solution 

Specialize our finite duration force to a piecewise constant one 9 

A~v= O, t < O, tl < t 
(2.1) 

A34(x) = A43(x) = f =  const., other AUv = 0, 

Then we have the exact solution 1° 

vU(7-) = (0, 0, sinh w(7-), cosh w(7-)) (2.2) 

where 

0 < t < t l  

w(r) = froer/ro(1 - e-r'/ro ), r <. 0 

w ( Q = f r + f r o ( 1 - e - t r ~ - r ) / r ° ) ,  0 < r < 7 - 1  (2.3) 

~(r)  = f ~ ,  7-1--< r 

corresponding to the LDR boundary conditions (1.2) with the initial data 3 

x(7-1) arbitrary, x4(71) = tl, v " ( - ~ )  = (0001) (2.4) 

Here we see clearly the runaway behavior in - ~ ,  < z < 0 because aU(0) v~ 0, 
the preacceleration just before z = 0 and the predeceleration just before 7- = 7-a 
[cf. point (a) above].  As for point (b), this solution is not  analytic at r o = 0; 
in fact it has an essential singularity there. 

Since the exponential terms in (2.3) are appreciable only in the practically 
unobservable time intervals 17-1 ~<r o and 17-- rlt ~< ro ~ 10 -23 sec, we could 
define an "effective LDR solution" by simply deleting these terms. That is, 
in general 

x~ff(r) =-xU(r; e ~/ro' -~ 0) (2.5) 

For the solution above this gives 

Weff(T ) = 0, 7" < 0 

=fT-+fro, 0<7-<7-1  (2.6) 

= f %  7-1< r 

where ve~ff defined by (2.2) in terms of  Weff. The meaning o f  the effective 
solution is that it describes the actual LDR solution away .from certain 
criticalproper times 7 i (here 7- = 0 and 7-0, i.e., for all 7- such that 17- - 7-i1 >> ro, 
all i. One cannot mutilate the LDR solution further without destroying its 

9 This step funct ion force can be rounded off to a continuous one, for which the 
existence and uniqueness theorems apply. Then the step function limit is taken in the 
solution. This has been done in (2.2) and (2.3). Note that  x~'(z), v~z(r) are con- 
tinuous (in fact the solution is C~). 

lO Rohrlich (1965), Section 6-13. We give only e# here and hereafter. 
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observable predictions. For example, one should no t  further remove the small 
but quite observable term fro, which acts over the whole macroscopic time 
interval (0, q)  and whose size, relative to the deleted term for that interval, is 

e(rl-r)lro >>2 > 1 

for all of that interval except the last ~10  -23 sec. 
We must now compare the LDR solutions, or their effective versions, with the 

predictions of perturbation theory. This will require a certain amount  of care 
in making the latter precise. 

3. Perturbation Theory and an Open Question 

Let 1-1 = size of (q/m) Fext. Define the dimensionless positiony u, proper 
time a, and parameter of smallness c by 

yU-xU/ l ,  o - r / l ,  e - r o l l  (3.1) 

Let AUv - (q/m) FextU~ be piecewise C ~ in x x in the intervals ti < t < ti+ 1, i = O, 
I , . . . .  Let £i: oi < o < oi+ 1 be the corresponding o intervals, where ly4(oi) = ti 
and yU(o) is the exact LDR solution of (1.1), (1.2). Then we define: xU(r;ro) 
is analytic in ro at r o = 0 iffyU(o; e) has a power series in e, with coefficient 
functions of o, converging in some circle, for oE each interval £i. In particular 

v(r, ro) ----- V(o; e) = ~ ePhp(i)(o) (3.2) 
p=o 

where 0 ~< lel <Ei and o @ Zi, for all i. 
Perturbation Theory will mean the infinite set of second-order differential 

equations for each Z/obtained by substituting the power series into (1.1) 
and equating the coefficients of e p, p = 0, 1 , . . . ,  to zero 11. As second-order 
equations, we need initial data 1~ (Xo, Vo} and the assumption that x(7-), v(r) 
are continuous to make the solution unique. The perturbation theory 
solution describing the same problem as an exact LDR solution (1.1), (1.2) 
wilt have the same initial data D O = (1.2a). 

In particular, for a finite duration, piecewise constant Fext like (2.1), the 
perturbation theory equations are (writing x = x o + xt  + x2 + • • ", where 
Xp ~ ~P) 

Xo = 0, 7- <0, r 1 < r; 5? o = AopYCo, 0 < 7- "( 7-1 (3.3o) 

11 Fine points: (a) 1At%(xo) =- O(1) by definition, where xo --= xoP(r) is the zero-order 
position. (b) We assume that the power series for y# can be differentiated term by 
term at least three times. 

12  Fine points: (a) The initial data are assumed analytic in r o at r 0 = 0 in the above 
sense. (b) If the initial data are given for a = a 0 ~ 1~]~ say, then the assumed continuity 
of x(7), v(7) suffices to provide analytic initial data for the other intervals ~i, i 4~], 
and hence to make the perturbation theory solution unique. 
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r<~O, 71"(7; xl=roPo+AopXl, 

etc. 
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O < r < r l  

(3.3t) 

where Aop is the constant 4 x 4 matrix (AUv) and Fo means the (9(t) part of  
the Abraham vector F. 

Now actually we know that, in general, solutions of  the LDR theory are 
not analytic in r o at r o = 0 in this sense. In general, we expect singularities, in 
fact essential singularities, at e = 0. For example, the solution (2.2), (2.3), 
when phrased as a function of a and e, where we take 1 -~ =-f, has terms like 
ee e/e in arguments of  the hyperbolic functions. Hence no such power series 
(3.2) exist. 

Nevertheless, as remarked already in Section 1, perturbation theory, e.g., 
the equations (3.3), considered say as a formal series of  which one keeps in 
practice only the first few terms, seems to give a good description, without 
known exceptions, to the experimentally observed motion. (Note that 
l is typically a macroscopic length, e.g., 1 cm, while r o --~ 10 -t3 cm, so that the 
expansion parameter e <<< 1 .) We take this as an indication that for the 
correct physical theory o f  the EM self-force, the solutions will either be 
analytic in r o at r o = 0 or (at least) the effective solutions, as defined in 
equation (2.5), will be analytic and moreover will agree with the perturbation 
theory solutions. I f  both  these conditions are met,  we may call the theory 
"effectively analytic." 

Hence we have the following open question about  the present (LDR) 
theory of the EM self-force: 

open question: is the LDR theory effectively analytic? (3.4) 

As far as we know, this question has never even been raised, much less 
answered. 

In symbols, the open question reads 

ro.(o; e) r.T(O; e) -- ePhp(0( ), an i, (3.5) 
p=O 

where V(a; e) is the LDR solution v(r; ro) expressed as a function of  e and 
e, and Veff(o; e) is obtained from it by setting all e °/e equal to zero. The 
perturbation theory solution Vpw(O; e) is defined as the formal series of 
the perturbation equation solutions. Both solutions V and Vp T have the same 
initial data Do. 

We close by investigating whether in fact the particular solution (2.2), (2.3) 
is effectively analytic. Veff is given by (2.6). We take 1-1 - f s o  that a - f r ,  
e~f r  O. 
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Gff(o; e) = (0001), o < 0 

= (0, O, sinh (o + e), cosh (o + e)) 

= (0,  O, sinh o, cosh o) + e (0, O, cosh o, sinh o) 

+ O(e2) ,  0 < o < o 1 

= (0, 0, sinh o1, cosh Ol) , o1< o (3.6) 

It is analytic, as expected, and in the driven region II it has terms of  O(e p) for 
all p = 0, 1 ..... 

Look now at the perturbation theory equations (3.3) with the same 
external force (2.1) and the same initial data Do, namely 3 

x v r ( r i )  arbitrary, X~,T(r t) = tl ,  V~T(--°° ) = (0001) (3.7) 

In free region I the motion is uniform by (3.3), hence from (3.7) 

VVT(r) = (000I) ,  r < 0 (3.8) 

In driven region It the Xo motion is uniform acceleration along the z axis 
by (3.3o). Therefore 13 

1)0 # = a # e  f'r + (3#e  -f~', 0 < T < 7 1 (3.9) 

where 

ao u = (0,  O, tXo, tXo), 3o u = (0,  O, - 3 0 ,  (30) (3.10) 

where c% and 3o are arbitrary O(1) constants, satisfies (3.30). 
The normalization condition V2T = --1 with veT = v o + v 1 + v z + " • " becomes 

% z  + 2% • v I + . . . . .  1, or 

%2 = _ 1, v o • v~ = 0, • • • (3.11) 

Hence r is xo-proper time as well. The continuity ofvpv at r = 0: Vpr(0+) = 
Vpv(0- ) = (000I)  in view of  (3.8) yields 

Vo(0+ ) = (0001), vl(0+) = 0 . . . .  (3.12) 

Now impose (3.1 lo) and (3.12o) to determine the constants ~o, 3o. This gives 

4~o(3o = - 1 ,  a o -  (3o = 0, ~ o + 3 o  = 1 (3.13) 

or So = (30 = 1/2. 
But then 002 = f2 ,  Vo = f2vo, so that F 0 ---- (V'o - f)oZVo) = 0. Hence the v 1 

equation in region II is 

i J l=Aopv  1, O < r < r l  ( 3 . 1 4 )  

13 Do not  confuse  the  O(1) velocity v 0 =-- vO1a(r) with the  initial data  v 0 = const.  
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The general solution of  this is just like (3.9), (3.10) with So, 3o ->al, 31 = 
arbitrary O(e) constants. Imposing (3.111) and (3.121) to determine the 
constants, we get 

0~031+ OL130 = O, C~1o- 31=  0 , ~1+31- - - -0  (3.15) 

or O/1 m 31 -- 0, SO Vl(T ) - 0 in  region II. 
In free region Ill the motion is uniform by (3.3). Imposing continuity of 

VpT at r = ~-1:VpT(T1 +) = VpT(T1--) = VO(T1--) + Vl(T1--) = (0,  0, sinh f~-t, c°sh f~-l) 
to O(e) in view of  the solution in region II, we get Vo(Z) e (0, 0, sinh fT 1, 
cosh frl), Vl('/" ) = 0, 7"1< 7". 

Therefore if we define @T =- Vo + vl, the complete PT solution up to 
O(e) 14 is then 

[~pT(O; e) =- vpT(T, to) = (0001), o ~< 0 

= (0, 0, sinh o, cosh a), 0 <~ o <( o 1 

= (0, 0, sinh Ol, cosh Crl) , O l ~ a  (3.16) 

This is to be compared with (3.6), keeping terms up to O(e). We see 
VpT(O; e) has no term of O(e) in its power series, while Veff(o; e) does, in 
the interval 0 < o < a 1. The upshot is that the solution (2.2), (2.3) of the 
LDR theory is not effectively analytic. 

It would be interesting to investigate more complicated solutions than this 
one (piecewise constant electric field, rectilinear motion), such as cyclotron 
or Coulomb field motion, to see whether the violation of effective analyticity 
is worse. Note that in the above case at least the zero-order motions agree, 
and the motions could be made to agree by a simple (but unwarranted!) 
shift of  the zero of  proper time in the driven region 0 < o < ol, cf. (3.6). 
That is, both motions are uniformly acce!erated, so they would be hard to 
distinguish experimentally. Though the solution is technically not  effectively 
analytic by our definition, this is not very conclusive. Do there exist fields 
for which the two zero-order motions disagree or for which the O(e) motions 
are of  different character? 
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